Background H₂O in high-z ULIRGs J=4 H₂O H₂O⁺ emission detections High angular resolution maps Summary 000 000000 0 0 0 0

$m H_2O$ Emission in Ultra-Luminous Infrared Galaxies at redshift \sim 2–4

Chentao Yang

with A. Omont, A. Beelen, E. González-Alfonso, R. Neri, Y. Gao, P. van der

Werf, A. Weiß, R. Gavazzi, N. Falstad, R. S. Bussmann, R. Ivison, M. Spaans,

et al. on behalf of the Herschel-ATLAS team

Thanks to IRAM

Water in the Universe @ESTEC, Noordwijk, 15/04/2016

The big picture - understanding the galaxy mass assembly

- Studying high-redshift ULIRGs is the key to understand the star formation → galaxy mass assembly.
- After CO, H₂O is one of the most important molecules probing the ISM:
 - H and O are among the most abundant elements. H₂O is almost everywhere in the universe.
 - H₂O is a different diagnostic from CO, sometimes comparable or even brighter than CO.

・ 同 ト ・ ヨ ト ・ ヨ

Probing the physical conditions of the ISM in ULIRGs

Background

Demonstrating the diagnostic power of H_2O

e.g., in Mrk 231: *González-Alfonso*+2010; APM08279: *van der Werf* +2011; *Lis*+2011; *Bradford*+2011; HLSJ091828: *Combes*+2012; HFLS3: *Riechers*+2013; ...

 $H_2O:$ a powerful diagnostic tool !

- IR-pumping dominated $(J \ge 2)$
- A very different tracer from CO
- High-J and low-J H₂O lines are comparable (unlike our Galaxy, dominated by low-J H₂O).
- Intensity ratio of H₂O/CO ~0.3-1 (unlike in Orion Bar ~0.02).
- Generally, H₂O lines diagnostic tells:
 - Column density of H₂O
 - Properties of FIR radiation field: e.g., *T*_{warm}, opacity, ...

A first systematic study of submm H₂O in local galaxies

- First systematic study of submm rotational H_2O emission lines in local infrared galaxies (45 out of 176) - L_{H_2O} is roughly proportion to L_{IR} : Confirm the importance of IR pumping for the submm H_2O excitation

How to observe the submm rotational H_2O lines?

- In our Galaxy and in nearby galaxies: very hard to observe from ground
 - Space telescopes: e.g., Ordin, SWAS , ISO, Herschel
- In high-redshift galaxies: shifted into atmospheric windows, but very weak
 - Through **gravitational lensing**: picking sources from lensing surveys: e.g., *H*erschel-ATLAS, *H*erMES, SPT and *Planck* all-sky surveys.

Finding the strongly lensed high-redshift ULIRGs

- Follow-up imaging observations for bulding **lensing model**; (Sample with ~30 sources, Bussmann et al. 2013)

flux density (mJv)

 H_2O detections in the Herschel high-z lensed ULIRGs

21/23 high-z detections in 17 galaxies: Omont, et al. 2011, 2013; Yang et al. 2016

 H_2O/H_2O^+ emission in lensed high-redshift Hy/ULIRGs

yangcht@gmail.com

H_2O lines of high-redshift lensed ULIRGs (an example)

Omont et al., 2011, 2013; Yang et al., 2016 (A&A submitted)

Tight correlations between L_{H_2O} and L_{IR} from local to high-redshift ULIRGs/HyLIRGs

Omont et al. 2013; Yang et al., 2016

H₂O in high-z ULIRGs H_2O/H_2O^+ emissions in high-redshift lensed ULIRGs

0000000

H₂O Spectral Line Energy Distribution (SLED)

Exploring the H₂O excitation in *Herschel* high-redshift ULIRGs, Yang et al., 2016

H₂O SLED normalized by 2_{02} - 1_{11} intensity:

- Large variation in the relative strength of higher-excitation line $H_2O(3_{21}-3_{12}).$
- Indicating various properties of infrared radiation fields.
- Higher excitation level $(J \ge 4)$ H₂O lines are needed in excitation modelling.

H₂O in high-z ULIRGs H_2O/H_2O^+ emissions in high-redshift lensed ULIRGs

000000

Modelling the H_2O gas excitation

In 5 sources, we have both J = 2and J = 3 H₂O detections:

- IR pumping model from González-Alfonso et al. 2010, 2014.
- The H₂O column density is similar to local infrared galaxies.
- H₂O excitation is powered by warm dust component $(T_{\rm warm} \sim 45-75 \text{ K}).$
- Strong degeneracies: J > 4H₂O lines are needed for better constraints (ongoing project). ヘロト ヘロト ヘビト ヘビト

Background H_2O in high-z ULIRGs $J = 4 H_2O$ H_2O^+ emission detections High angular resolution maps Summary On-going observations of $J = 4 H_2O$ emission line via NOEMA

On-going observations of $J = 4 \text{ H}_2\text{O}$ lines using NOEMA

 L_{IR} - L_{H_2O} correlation and further constraining of the IR pumping model

• $J = 4 H_2O$ is important for constraining the H₂O excitation modelling.

Understand the ionisation rate and ${\rm H_2O}$ formation via ${\rm H_2O^+}$

H_2O^+ emission in the high-redshift ULIRGs Shedding light on the chemistry of H_2O/H_2O^+ (Yang et al., 2016)

H₂O formation is likely to be dominated by the ion-neutral route and/or an undepleted chemistry.

 $\begin{array}{ccc} \text{Background} \\ \text{oo} \\ \text{oo} \\ \end{array} \begin{array}{c} \text{H}_2 \text{O} \text{ in high-z ULIRGs} \\ \text{oo} \\ \text{oo} \\ \end{array} \begin{array}{c} J=4 \ \text{H}_2 \text{O} \\ \text{mission detections} \\ \text{oo} \\ \text{o} \\ \end{array} \begin{array}{c} \text{High angular resolution maps} \\ \text{Summary} \\ \text{o} \\ \end{array} \end{array}$

On-going high angular resolution imaging of H_2O and dust via NOEMA

High angular resolution images of the H_2O emission

- Comparing the spatial distribution of dust emission, $H_2O,\,H_2O^+$ and CO(10-9) emission in sub-kpc scale (+lensing model).
 - Comparing the spatial distributions of different gas tracers.
 - Testing the IR pumping model, and better constrain the physical parameters.
- Building lensing model for each line, "differential lensing free".

$\begin{array}{c} \mbox{Background} \\ \mbox{oco} \ \mbox{oco} \\ \mbox{oco} \ \mbox{oco} \\ \mbox{oco} \ \mbox{oco} \ \mbox{oco} \ \mbox{oco} \ \mb$

Summary

First systematic study of submm H_2O emissions in high-redshift ULIRGs, and the largest sample up to date –

- H₂O is an efficient and important diagnostic tool for the infrared sources in the warm, dense regions linked to intense star formation activities in our high-z ULIRGs. They are strong and comparable with high-J CO lines.
- $L_{\text{H}_2\text{O}} \sim L_{\text{IR}}^{1.1-1.2}$, correlating strongly with star formation.
- IR pumping plays an important role in the submm H₂O excitation and dominates the J ≥ 2 H₂O excitation.
- $J \ge 4 \text{ H}_2\text{O}$ lines are needed for better constraining the IR pumping model.
- H₂O⁺/H₂O intensity ratio suggests high ionisation by cosmic rays coming from intense star forming activities.
- High angular resolution images allow us to correctly recover the intrinsic quantities and compare spatial distributions of different gas tracers.

Thanks for your attention and see you in post-doc job market!

Chentao Yang^{1,2,3}

1. Institute d'Astrophysique Spatiale, France

2. Institut d'Astrophysique de Paris, France

3. Purple Mountain Observatory, China 15/04/2016

The linearly correlation down to Galactic YSOs

A linear correlation from Galactic YSOs to local galaxies. San José-García et al. 2015

But...still, a lot of physical processes are going on there.

 $\begin{array}{cccc} \text{Background} \\ \text{oo} \\ \text{oo} \\ \text{oo} \\ \text{oo} \\ \end{array} \begin{array}{c} \text{H}_2 \text{O} \text{ in high-z ULIRGs} \\ \text{o} \\ \text{o} \\ \text{o} \\ \end{array} \begin{array}{c} J=4 \ \text{H}_2 \text{O} \\ \text{H}_2 \text{O}^+ \ \text{emission detections} \\ \text{o} \\ \text{o} \\ \text{o} \\ \end{array} \begin{array}{c} \text{High angular resolution maps} \\ \text{Summary} \\ \text{o} \\ \text{o} \\ \end{array} \right.$

Correlation between the luminosities of H_2O and infrared

 $\begin{array}{ccc} \text{Background} \\ \text{oc} \\ \text{oc$

$L_{\rm H_2O}/L_{\rm IR}$ & dust temperature

- Line 8 (642K) has strong dependence on T_d , increase with T_d ; Line 1-4 have opposite trends.
- Low-lying: $L_{\rm IR}/L_{\rm H_2O}$ decrease with T_d , high-lying: $L_{\rm IR}/L_{\rm H_2O}$ increase with T_d

The variation of the L_{H_2O} - L_{IR} correlation with T_{dust}

 H_2O/H_2O^+ emission in lensed high-redshift Hy/ULIRGs

Summary

 $\begin{array}{ccc} \text{Background} & \text{H}_2\text{O} \text{ in high-z ULIRGs} & J = 4 \text{ H}_2\text{O} & \text{H}_2\text{O}^+ \text{ emission detections} & \text{High angular resolution maps} & \text{Summary} \\ \hline 000 & 0 & 0 & 0 \\ \end{array}$

Where do the H_2O^+ and H_2O come from?

- Correlation between H_2O and H_2O + from local to high-redshift ULIRGs.
- H_2O formation is likely to be dominated by the ion-neutral route and/or an undepleted chemistry.